Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(51): 32627-32638, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277434

RESUMO

Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum "DPANN," two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.


Assuntos
Fontes Hidrotermais/microbiologia , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Erupções Vulcânicas , Archaea/genética , Bactérias/genética , Biodiversidade , Concentração de Íons de Hidrogênio , Metagenoma , Nova Zelândia , Oxirredução , Oceano Pacífico , Filogenia , Sulfetos/química
2.
Extremophiles ; 22(4): 687-698, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29713821

RESUMO

Raoul Island is a subaerial island volcano approximately 1000 km northeast of New Zealand. Its caldera contains a circumneutral closed-basin volcanic lake and several associated pools, as well as intertidal coastal hot springs, all fed by a hydrothermal system sourced from both meteoric water and seawater. Here, we report on the geochemistry, prokaryotic community diversity, and cultivatable abundance of thermophilic microorganisms of four terrestrial features and one coastal feature on Raoul. Hydrothermal fluid contributions to the volcanic lake and pools make them brackish, and consequently support unusual microbial communities dominated by Planctomycetes, Chloroflexi, Alphaproteobacteria, and Thaumarchaeota, as well as up to 3% of the rare sister phylum to Cyanobacteria, Candidatus Melainabacteria. The dominant taxa are mesophilic to moderately thermophilic, phototrophic, and heterotrophic marine groups related to marine Planctomycetaceae. The coastal hot spring/shallow hydrothermal vent community is similar to other shallow systems in the Western Pacific Ocean, potentially due to proximity and similarities of geochemistry. Although rare in community sequence data, thermophilic methanogens, sulfur-reducers, and iron-reducers are present in culture-based assays.


Assuntos
Fontes Termais/microbiologia , Microbiota , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Fontes Termais/química , Ferro/análise , Ferro/metabolismo , Metano/análise , Metano/metabolismo , Nova Zelândia , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Enxofre/análise , Enxofre/metabolismo , Erupções Vulcânicas
3.
Environ Sci Technol ; 48(22): 13367-75, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25329793

RESUMO

Introduction of acetate into groundwater at the Rifle Integrated Field Research Challenge (Rifle, CO) has been used for biostimulation aimed at immobilizing uranium. While a promising approach for lowering groundwater-associated uranium, a concomitant increase in soluble arsenic was also observed at the site. An array of field data was analyzed to understand spatial and temporal trends in arsenic release and possible correlations to speciation, subsurface redox conditions, and biogeochemistry. Arsenic release (up to 9 µM) was strongest under sulfate reducing conditions in areas receiving the highest loadings of acetate. A mixture of thioarsenate species, primarily trithioarsenate and dithioarsenate, were found to dominate arsenic speciation (up to 80%) in wells with the highest arsenic releases; thioarsenates were absent or minor components in wells with low arsenic release. Laboratory batch incubations revealed a strong preference for the formation of multiple thioarsenic species in the presence of the reduced precursors arsenite and sulfide. Although total soluble arsenic increased during field biostimulation, the termination of sulfate reduction was accompanied by recovery of soluble arsenic to concentrations at or below prestimulation levels. Thioarsenic species can be responsible for the transient mobility of sediment-associated arsenic during sulfidogenesis and should be considered when remediation strategies are implemented in sulfate-bearing, contaminated aquifers.


Assuntos
Arsênio/análise , Sulfatos/química , Compostos de Enxofre/análise , Técnicas de Cultura Celular por Lotes , Meio Ambiente , Oxirredução , Enxofre/análise , Incerteza , Poluentes Químicos da Água/análise
4.
Environ Toxicol Chem ; 32(6): 1216-23, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23401165

RESUMO

Stimulating microbial growth through the use of acetate injection wells at the former uranium mill site in Rifle, Colorado, USA, has been shown to decrease dissolved uranium (VI) concentrations through bacterial reduction to immobile uranium (IV). Bioreduction also changed the redox chemistry of site groundwater, altering the mobility of several other redox-sensitive elements present in the subsurface, including iron, sulfur, and arsenic. Following acetate amendment at the site, elevated concentrations of arsenic in the groundwater were observed. Ion chromatography-inductively coupled plasma-mass spectrometry was used to determine the aqueous arsenic speciation. Upgradient samples, unexposed to acetate, showed low levels of arsenic (≈1 µM), with greater than 90% as arsenate (As[V]) and a small amount of arsenite (As[III]). Downgradient acetate-stimulated water samples had much higher levels of arsenic (up to 8 µM), and 4 additional thioarsenic species were present under sulfate-reducing conditions. These thioarsenic species demonstrate a strong correlation between arsenic release and sulfide concentrations in groundwater, and their formation may explain the elevated total arsenic concentrations. An alternative remediation approach, enhanced flushing of uranium, was accomplished by addition of bicarbonate and did not result in highly elevated arsenic concentrations.


Assuntos
Arsênio/análise , Água Subterrânea/química , Modelos Químicos , Microbiologia da Água , Poluentes Químicos da Água/análise , Arsênio/química , Bactérias , Biodegradação Ambiental , Colorado , Fenômenos Geológicos , Água Subterrânea/microbiologia , Ferro , Oxirredução , Urânio/análise , Poluentes Químicos da Água/química
5.
Environ Microbiol ; 11(12): 3087-95, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19638174

RESUMO

Six position-specific (13)C-labelled isotopomers of glucose were supplied to the ectomycorrhizal fungi Suillus pungens and Tricholoma flavovirens. From the resulting distribution of (13)C among fungal PLFAs, the overall order and contribution of each glucose atom to fatty acid (13)C enrichment was: C6 (approximately 31%) > C5 (approximately 25%) > C1 (approximately 18%) > C2 (approximately 18%) > C3 (approximately 8%) > C4 (approximately 1%). These data were used to parameterize a metabolic model of the relative fluxes from glucose degradation to lipid synthesis. Our data revealed that a higher amount of carbon is directed to glycolysis than to the oxidative pentose phosphate pathway (60% and 40% respectively) and that a significant part flows through these pathways more than once (73%) due to the reversibility of some glycolysis reactions. Surprisingly, 95% of carbon cycled through glyoxylate prior to incorporation into lipids, possibly to consume the excess of acetyl-CoA produced during fatty acid turnover. Our approach provides a rigorous framework for analysing lipid biosynthesis in fungi. In addition, this approach could ultimately improve the interpretation of isotopic patterns at natural abundance in field studies.


Assuntos
Basidiomycota/metabolismo , Glucose/metabolismo , Lipídeos/biossíntese , Micorrizas/metabolismo , Tricholoma/metabolismo , Isótopos de Carbono , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...